

ROS Interface for P-Rob

Version 1.0.1
2015-09-25

F&P Robotics AG 1 ROS Interface for P-Rob

The information contained in this document is property of F&P Robotics AG and shall not be
reproduced in whole or in part without prior written approval of F&P Robotics AG. The
information provided herein is subject to changes without notice and should not be
constructed as a commitment by F&P Robotics AG. This manual is periodically reviewed and
revised. F&P Robotics AG assumes no responsibility for any errors or omissions in this
document.

Copyright © 2011-2015 by F&P Robotics AG. All rights reserved.

The F&P logo as well as P-Rob®, P-Grip® and myP® are registered trademarks of F&P Robotics
AG in Zurich, Switzerland.

F&P Robotics AG 2 ROS Interface for P-Rob

Contents

1. Concept ..3

2. XML_RPC Server Commands ...3

2.1 Command Reference ...4

3. Installing ROS ...8

4. The ROS package prob_interface ..8

4.1 prob_server ...9

4.2 Clients ..9

5. Examples .. 11

F&P Robotics AG 3 ROS Interface for P-Rob

1. Concept

Any Prob can be used remotely through the XML_RPC Server on myP. For the remote

control of the Prob through ROS, a special ROS package was made, which contains all

necessary tools for working with the Prob in ROS.

The ROS Package “prob_interface” contains the node “prob_server”. This node has a ROS

Service for every function the XML_RPC Server offers and also for the most important MyP

Script Commands.

A ROS Service can be called from any ROS client, a test example is included in the

package. The prob_server communicates through XMLRPC to the myP API, which includes

all necessary functions. For more infromation about how the XMLRPC server is working

have a look at our XML_RPC Interface for Prob manual.

2. XML_RPC Server Commands

The XMLRPC interface works together with the webinterface of myP or any other client. So
it’s possible to use the webinterface of myP to configure the robot and write a script and
execute this script afterwards through an XMLRPC call. All scripts, paths and poses are
stored in myP and are always up to date whatever client is used to create/edit them.

F&P Robotics AG 4 ROS Interface for P-Rob

2.1 Command Reference

Robot control

initialize(model=’PRob1R’, kind=’real’, channel_name=’1’,

channel_type=’PEAK_SYS_PCAN_USB’, protocol=’TMLCAN’, host_id=’10’, baudrate=’500000’)

Initializes the P-Rob.

Parameter Type Description

model String Model of the robot as configured in the config file

kind String It can be:

 real: real robot

 sim: robot simulation

 no_robot: no real robot

channel_name String Channel name of the connection to the P-Rob.

channel_type String Channel type of the connection to the P-Rob.

protocol String CAN protocol to use: ‘TMLCAN’ or ‘CANOPEN’

host_id String Axis ID of the host computer, have to be different to the

one of the axis.

baudrate String CAN bus baudrate, default value is 500’000.

finalize()

Disconnect the P-Rob.

calibrate(use_existing=True)

Calibrate the P-Rob.

Parameter Type Description

use_existing Boolean use the existing calibration values or do a new

calibration

F&P Robotics AG 5 ROS Interface for P-Rob

release(joint_id)

Releases the given joints.

Parameter Type Description

joint_id Integer, List a list of joints

hold(joint_id)

Hold the given joints.

Parameter Type Description

joint_id Integer, List a list of joints

pause()

Pause the P-Rob.

resume()

Resume a previous paused P-Rob.

stop()

Stops a movement or a running script of the P-Rob

recover()

Recover the P-Rob after an error.

Status

get_poses()

Get all saved poses.

get_paths()

Get the all saved paths.

F&P Robotics AG 6 ROS Interface for P-Rob

get_current()

Get the current of all joints.

get_euler_position()

Get the euler position of all joints.

get_position()

Get the position of all joints.

get_actuator_release_state()

Get the release state of all joints.

 False: Released

 True: Hold

get_connection_info()

Get the connection state:

 0: not initialized

 1: initializing, not calibrated

 2: initialized, not calibrated

 3: initialized, calibrating

 4: initialized, calibrated

get_status_info()

Get the status:

 0: None

 1: Ready

 2: Stopped

 3: Paused

 4: Running

 5: Released

 6: Error

F&P Robotics AG 7 ROS Interface for P-Rob

get_message_info()

If the status is ‘ERROR’, this function will return the message describing the error.

get_application_info()

Get the name and ID of the script which is currently active.

Script Control

get_scripts()

Get the name and ID of all saved scripts.

get_script(script_id)

Get the code of a saved script.

Parameter Type Description

script_id Integer ID of the script. If the ID is unknown, use get_script_id()

get_script_id(name)

Get the ID of the script.

Parameter Type Description

name String Name of the script

save_script(name, code)

Save a new script. The script supports all functions which are described in myP Script

Command Reference Manual.

Parameter Type Description

name String Name of the script to save

code String Script code

delete_script(script_id)

F&P Robotics AG 8 ROS Interface for P-Rob

Delete the specified script.

Parameter Type Description

script_id Integer ID of the script. If the ID is unknown, use get_script_id()

test_script(code)

Execute a script code directly without saving it. The script supports all functions which are

described in myP Script Command Reference Manual.

Parameter Type Description

code String Script code

execute_script(script_id)

Execute a previous saved script. The script can be paused/resumed and stopped.

Parameter Type Description

script_id Integer ID of the script. If the ID is unknown, use get_script_id()

3. Installing ROS

1) Install ROS Indigo: http://wiki.ros.org/ROS/Installation

2) Create a catkin workspace

3) Copy the F&P package “prob_ interface” to the workspace

4) Compile the code and source your setup

 $ catkin_make
 $ source devel/setup.bash

5) run roscore

6) Now you are ready to run the example program

4. The ROS package prob_interface

The prob_interface package provides an interface from ROS to the Prob. With this package

the Prob can be steered and programed like in MyP.

http://wiki.ros.org/ROS/Installation

F&P Robotics AG 9 ROS Interface for P-Rob

4.1 prob_server

 This Node builds a connection to the XML_RPC server of MyP and offers ROS services

 for all necessary MyP functions.

Services

All the ROS Services of the prob_server take the arguments of the corresponding

 XML_RPC Server function as request input and yield a success boolean as result.

There are Services which call XML_RPC Server commands directly like “initialize”,

and there are Services which call MyP Script Commands like “move_joint” through

the XML_RPC command “test_script”. This means that it is possible to execute

every MyP Script Command there is. All the MyP Script Commands can be found in

the MyP Script Command Reference Manual.

 The following Services are implemented:

 initialize(model, kind, channel_name, channel_type, protocol, host_id,

baudrate)

 calibrate(use_existing)

 test_script(script_code)

 execute_script(script_id)

 release(joind_ids)

 hold(joint_ids)

 move_joint(joint_ids, positions, velocity, acceleration, block, relative)

 move_tool(x, y, z, phi, theta, psi, velocity, acceleration, block, relative)

 move_linear(x, y, z, phi, theta, psi, velocity, acceleration, block, relative)

 move_to_pose(name, velocity, acceleration, block)

 open_gripper(angles, velocity, acceleration)

 close_gripper(velocity, acceleration, current)

 wait(time)

4.2 Clients

 The package also contains useful client executables and client functions that make

 working with the prob_server even easier.

Client Functions

In the file ‘client_functions.py’ contains a function for every service of the

prob_server, which takes the same arguments as the server and also has the same

name as the server. So you can just import all the functions of the client functions

file and work with them instead of writing your own service calls.

F&P Robotics AG 10 ROS Interface for P-Rob

execute_script.py

This client executable takes a file path + name as argument and sends the whole

content of the file to MyP. So it is possible to write a MyP Script into a file and

execute it very easily with this client.

F&P Robotics AG 11 ROS Interface for P-Rob

5. Examples

Requirements:

 ROS Indigo has to be installed

 prob_ros_interface is installed

 MyP needs to be running (start_server.py)

 XMLRPC Server needs to be running (xmlrpc_server.py)

Open a new Terminal and run roscore:

$ roscore

Start the Prob server with the IP address of the host that runs MyP in another Terminal:

$ rosrun prob_interface prob_server.py 192.168.21.157

Open a third Terminal and run your client, for example the sample demo to move joint 1

of P-Rob by 10 degrees and back again:

$ rosrun prob_interface client_demo.py 1 10 45 60
$ rosrun prob_interface client_demo.py 1 0 45 60

Also possible is to write a script into a file and send it to the robot:

$ rosrun prob_interface execute_script.py filename

, where filename is the full path + name of the file containing the script,

for example ~/scripts/test_script.script

Example Script:

 #This is an Example Script

 open_gripper()

 close_gripper()

 move_joint(1,30) #Move Joint 1 to 30 Degrees

